Abstract

Syngas production via steam-based thermochemical gasification of Brazilian sugarcane bagasse, using concentrated solar energy for process heat, was thermodynamically and experimentally investigated. Energy and exergy analyses revealed the potential benefits of solar-driven over conventional autothermal gasification that included superior quality of syngas composition and higher yield per unit of feedstock. Reaction rates for the gasification of fast pyrolyzed bagasse char were measured by thermogravimetric analysis and a rate law based on the oxygen exchange mechanism was formulated. In order to provide residence times long enough for adequate char conversion, a laboratory-scale entrained flow reactor that combines drop-tube and fixed-bed concepts was developed. Testing was performed in an electric furnace with the final aim to supply heat by concentrated solar radiation. Experimental runs at reactor temperatures of 1073–1573 K and a biomass feed rate of 0.48 g/min yielded high-quality syngas of molar ratios H2/CO = 1.6 and CO2/CO = 0.31, and with heating values of 15.3–16.9 MJ/kg, resulting in an upgrade factor (ratio of heating value of syngas produced over that of the feedstock) of 112%. Theoretical upgrade factors of up to 126%, along with the treatment of wet feedstock and elimination of the air separation unit, support the potential benefits of solar-driven over autothermal gasification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.