Abstract

Electromagnetic fields and currents connect various regions of the earth's near space environment extending upto the magnetopause. Realization of this fact has lead to the concept of Global Electric Circuit (GEC) to describe the electromagnetic environment of the earth's atmosphere. Solar wind - magnetosphere - ionosphere coupling forms a vital component of GEC. Magnetospheric substorms represent a global interaction between the solar wind, the magetosphere, and the ionosphere. This article gives an overview of the solar wind - magnetosphere- ionosphere coupling processes with emphasis on the nonlinear particle dynamics in the magnetotail. Those aspects of the substorm processes which involve the chaotic dynamics are highlighted. Various methods based on nonlinear particle dynamics, linear prediction filtering techniques, phase space reconstruction techniques, and dynamical anologue models of geomagnetic activity are reviewed. It is shown that the solar wind- magnetosphere - ionosphere system behaves as a strongly coupled nonlinear dynamical system which could be driven from regular to chaotic behavior with low dimensionality when the solar wind forcing is strong enough.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call