Abstract

The description of the turbulent spectrum of magnetic fluctuations in the solar wind in the kinetic range of scales is not yet completely established. Here, we perform a statistical study of 100 spectra measured by the STAFF instrument on the Cluster mission, which allows to resolve turbulent fluctuations from ion scales down to a fraction of electron scales, i.e. from $\sim 10^2$ km to $\sim 300$ m. We show that for $k_{\perp}\rho_e \in[0.03,3]$ (that corresponds approximately to the frequency in the spacecraft frame $f\in [3,300]$ Hz), all the observed spectra can be described by a general law $E(k_\perp)\propto k_\perp^{-8/3}\exp{(-k_\perp \rho_e)}$, where $k_{\perp}$ is the wave-vector component normal to the background magnetic field and $\rho_e$ the electron Larmor radius. This exponential tail found in the solar wind seems compatible with the Landau damping of magnetic fluctuations onto electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.