Abstract

The solar-wind interacts directly with the lunar surface due to tenuous atmosphere and magnetic field. The interaction results in an almost complete absorption of the solar-wind corpuscles producing no upstream bowshock but a cavity downstream. The solar-wind oxygen ionic species induce and undergo a complex set of reactions with the elements of the lunar minerals and the solar-wind derived trapped gases. The oxygen concentration indegeneous to the lunar surface material is about 60 at.%. Some of these oxygen are displaced from their crystal lattice locations by interactions of the solar-wind corpuscles. A small fraction of these displaced oxygen is in active state. The solar-wind oxygen species flux is about 6×104 cm−2 s−1. Besides inducing and undergoing various reactions these species become trapped as oxygen atoms in the lunar grains. Only a portion of these trapped oxygen atoms is in active state. For the contribution of oxygen atoms and molecules from the lunar surface grains to the atmosphere and their reactions with other species, the diffusion coefficients of oxygen atom and molecule should be known. However their values in the highly radiation-damaged lunar surface material are not known. The coefficients are calculated by using the apparent lifetimes of atomic and molecular oxygen in the lunar material. The atmospheric concentration of oxygen atoms and molecules near the lunar surface are found to be about 20 and 3 cm−3, respectively. These values appear to be very reasonable in comparison with the experimental data. The Apollo 17 lunar orbital UV spectrometer data indicate the atomic oxygen concentration is <8×101 cm−3. The Apollo 17 lunar surface mass spectrometer (sensitivity: 1 count=2×102 molecules cm−3) did not detect any oxygen molecules on the dayside of the Moon, but the sunrise concentration was reported to be 1±×103 cm−3. At the time of the sample collection on the Moon the oxygen content in the trapped gas layer was partly as oxygen atoms and partly as oxygen molecules. At the time of sample analysis on the Earth the concentrations of these two species did not change appreciably.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.