Abstract

The Fast Imaging Plasma Spectrometer (FIPS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has made the first in situ measurements of solar wind plasma in the inner heliosphere since the Helios 1 and 2 spacecraft in the 1980s. Although the core of the solar wind velocity distribution is obstructed by the spacecraft sunshade, a data analysis technique has been developed that recovers both bulk and thermal speeds to 10% accuracy and provides the first measurements of solar wind heavy ions (mass per charge >2 amu/e) at heliocentric distances within 0.5 AU. Solar wind alpha particles and heavy ions appear to have similar mean flow speeds at values greater than that of the protons by approximately 70% of the Alfvén speed. From an examination of the thermal properties of alpha particles and heavier solar wind ions, we find a ratio of the temperature of alpha particles to that of protons nearly twice that of previously reported Helios observations, though still within the limits of excessive heating of heavy ions observed spectroscopically close to the Sun. Furthermore, examination of typical magnetic power spectra at the orbits of MESSENGER and at 1 AU reveals the lack of a strong signature of local resonant ion heating, implying that a majority of heavy ion heating could occur close to the Sun. These results demonstrate that the solar wind at ∼0.3 AU is a blend of the effects of wave–particle interactions occurring in both the solar corona and the heliosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call