Abstract

Coronal holes are well-known sources of the high-speed solar wind; however, the exact acceleration mechanism of the fast wind is still unknown. We solve numerically the time-dependent, nonlinear, resistive 2.5-dimensional MHD equations and find that solitary waves are generated in coronal holes nonlinearly by torsional Alfven waves. The solitary wave phase velocity was found to be slightly above the sound speed in the coronal hole; for example, with the driving Alfven wave amplitude vd ≈ 36 km s-1 and plasma β = 5%, the solitary wave phase speed is ~185 km s-1. We show with a more simplified analytical model of the coronal hole that sound waves are generated nonlinearly by Alfven waves. We find numerically that these waves steepen nonlinearly into solitary waves. In addition, ohmic heating takes place in the coronal hole inhomogeneities owing to phase-mixing of the torsional Alfven waves. When solitary waves are present, the solar wind speed and density fluctuate considerably on timescales of ~20-40 minutes in addition to the Alfvenic fluctuations. The solitary wave-driven wind might be in better qualitative agreement with observations than the thermally driven and WKB Alfven wave solar wind models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.