Abstract

Solar walls provide transformative solutions by harnessing solar energy to generate electricity, improve thermal comfort, and reduce energy consumption and emissions, contributing to zero-energy buildings and mitigating climate change. In hot and humid regions, solar walls can reduce indoor temperatures by 30% to 50%, significantly improving energy efficiency. Optimizing the performance of solar walls includes factors such as glazing, shading, solar orientation, ventilation, and catalytic techniques, allowing them to be adapted to different climates. Innovative solar wall variants that include photovoltaic panels, water storage, and phase-change materials offer multifunctionality and sustainability in building design and are in line with global energy efficiency and environmentally conscious goals. In addition, innovative solar wall variants that combine photovoltaic panels, water storage, and phase-change materials promise even more sustainability in building design. These multifunctional solar wall systems can efficiently heat, cool, and generate energy, further reducing a building’s environmental impact. Solar walls have the potential to significantly reduce heating energy consumption; align with global goals for energy-efficient, environmentally conscious, and climate-responsive building design; and offer dynamic and adaptable solutions for sustainable architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.