Abstract

Abstract. In March 2017, measurements of downward global irradiance of ultraviolet (UV) radiation were started with a multichannel GUV-2511 radiometer in Marambio, Antarctica (64.23∘ S; 56.62∘ W), by the Finnish Meteorological Institute (FMI) in collaboration with the Servicio Meteorológico Nacional (SMN). These measurements were analysed and the results were compared to previous measurements performed at the same site with the radiometer of the Antarctic NILU-UV network during 2000–2008 and to data from five stations across Antarctica. In 2017/2018 the monthly-average erythemal daily doses from October to January were lower than those averaged over 2000–2008 with differences from 2.3 % to 25.5 %. In 2017/2018 the average daily erythemal dose from September to March was 1.88 kJ m−2, while in 2018/2019 it was 23 % larger (2.37 kJ m−2). Also at several other stations in Antarctica the UV radiation levels in 2017/2018 were below average. The maximum UV indices (UVI) in Marambio were 6.2 and 9.5 in 2017/2018 and 2018/2019, respectively, whereas during years 2000–2008 the maximum was 12. Cloud cover, the strength of the polar vortex and the stratospheric ozone depletion are the primary factors that influence the surface UV radiation levels in Marambio. The lower UV irradiance values in 2017/2018 are explained by the high ozone concentrations in November, February and for a large part of October. The role of cloud cover was clearly seen in December, and to a lesser extent in October and November, when cloud cover qualitatively explains changes which could not be ascribed to changes in total ozone column (TOC). In this study, the roles of aerosols and albedo are of minor influence because the variation of these factors in Marambio was small from one year to the other. The largest variations of UV irradiance occur during spring and early summer when noon solar zenith angle (SZA) is low and the stratospheric ozone concentration is at a minimum (the so-called ozone hole). In 2017/2018, coincident low total ozone column and low cloudiness near solar noon did not occur, and no extreme UV indices were measured.

Highlights

  • Ultraviolet (UV) radiation is part of the Sun’s electromagnetic radiation in the wavelength range from 100 to 400 nm; UV radiation at wavelengths smaller than 280 nm does not reach the surface of the Earth (UNEP, 1998)

  • The amount of UV radiation reaching the ground depends on various factors that can be divided into geometrical (including the distance between the Sun and the Earth and the solar zenith angle (SZA) at a given location) and geophysical factors (Kerr, 2005)

  • In 2017/2018 the average daily erythemal dose from September–March was 1.88 kJ m−2, while in the season it was 23 % larger (2.37 kJ m−2), and the monthly average of daily doses was lower in each month during 2017/2018 compared to the corresponding month in 2018/2019 (Table 2)

Read more

Summary

Introduction

Ultraviolet (UV) radiation is part of the Sun’s electromagnetic radiation in the wavelength range from 100 to 400 nm; UV radiation at wavelengths smaller than 280 nm does not reach the surface of the Earth (UNEP, 1998). The amount of UV radiation reaching the ground depends on various factors that can be divided into geometrical (including the distance between the Sun and the Earth and the solar zenith angle (SZA) at a given location) and geophysical factors (Kerr, 2005). Examples of the latter are clouds, ozone (O3) and aerosol particles, which can absorb or scatter UV radiation – absorption by O3 is the reason why UV radiation at wavelengths shorter than 280 nm does not reach the ground. The variability of cloud cover is dependent on the location; its weather conditions, like prevailing wind; and topography

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call