Abstract

To prevent undercooling of the ground in densely populated areas, regeneration of borehole heat exchangers (BHEs), for example by solar thermal heat, may become necessary. However, the usable roof area is often small compared to the building’s heat demand, especially in urban areas. It was investigated how much regeneration is possible in districts that are supplied entirely by heat pumps with BHEs. Example buildings were modelled based on the buildings of two districts in Zurich. Uncovered PVT collectors and glazed flat-plate collectors were used as regeneration sources. The possible regeneration was determined in a simulation process that included the effects of mutual influences between the BHEs of neighbouring buildings. As expected, glazed flat-plate collectors allow for more regeneration than uncovered PVT collectors. For full regeneration, the required usable roof area relative to the annual heat demand is about 1.8m2/MWh for PVT and 1.2m2/MWh for flat-plate collectors. Large buildings often do not provide sufficient roof area for full regeneration. A sustainable heat supply of the entire district with regenerated BHEs can be possible in suburban neighbourhoods, if the bigger buildings are distributed rather evenly. In urban neighbourhoods, areas may exist in which solar thermal regeneration alone is not sufficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call