Abstract

General Relativity extensions based on Renormalization Group effects are motivated by a known physical principle and constitute a class of extended gravity theories that have some unexplored unique aspects. In this work we develop in detail the Newtonian and post Newtonian limits of a realisation called Renormalization Group extended General Relativity (RGGR). Special attention is taken to the external potential effect, which constitutes a type of screening mechanism typical of RGGR. In the Solar System, RGGR depends on a single dimensionless parameter $\bar \nu_\odot$, and this parameter is such that for $\bar \nu_\odot = 0$ one fully recovers GR in the Solar System. Previously this parameter was constrained to be $|\bar \nu_\odot| \lesssim 10^{-21}$, without considering the external potential effect. Here we show that under a certain approximation RGGR can be cast in a form compatible with the Parametrised Post-Newtonian (PPN) formalism, and we use both the PPN formalism and the Laplace-Runge-Lenz technique to put new bounds on $\bar \nu_\odot$, either considering or not the external potential effect. With the external potential effect the new bound reads $|\bar \nu_\odot| \lesssim 10^{-16}$. We discuss the possible consequences of this bound to the dark matter abundance in galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.