Abstract

Hydrostatic equilibrium and energy conservation determine the conditions in the gravitationally stabilized solar fusion reactor. We assume a matter density distribution varying non- linearly through the central region of the Sun. The analytic solutions of the differential equations of mass conservation, hydrostatic equilibrium, and energy conservation, together with the equation of state of the perfect gas and a nuclear energy generation rate $\epsilon=\epsilon_0\rho^nT^m$, are given in terms of Gauss' hypergeometric function. This model for the structure of the Sun gives the run of density, mass pressure, temperature, and nuclear energy generation through the central region of the Sun. Because of the assumption of a matter density distribution, the conditions of hydrostatic equilibrium and energy conservation are separated from the mode of energy transport in the Sun.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call