Abstract

In order to clear up the origin and possibly explain some solar limb and disc spicule quasi-periodic recurrences produced by overlapping effects, we present a simulation model assuming quasi- random positions of spicules. We also allow a set number of spicules with different physical properties (such as: height, lifetime and tilt angle as shown by an individual spicule) occurring randomly. Results of simulations made with three different spatial resolutions of the corresponding frames and also for different number density of spicules, are analyzed. The wavelet time/frequency method is used to obtain the exact period of spicule visibility. Results are compared with observations of the chromosphere from i/ the Transition Region and Coronal Explorer (TRACE) filtergrams taken at 1600 angstrom, ii/ the Solar Optical Telescope (SOT) of Hinode taken in the Ca II H-line and iii/ the Sac-Peak Dunn’s VTT taken in H? line. Our results suggest the need to be cautious when interpreting apparent oscillations seen in spicule image sequences when overlapping is present, i.e. ; when the spatial resolution is not enough to resolve individual components of spicules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.