Abstract

Solar selective coatings that absorb solar incident light but that inhibit emission of thermal light can have a dramatic impact on the performance of Direct Steam Generation (DSG) systems. In prior art, perfect coatings with instantaneous transitions between high absorption and low absorption have been modeled. In this paper non-ideal spectral, environmental, and material properties of solar selective coatings are shown to have significant effects on the efficiencies and optimum transition wavelengths of real systems. By introducing more real world parameters into the coating optimization it is desired that a more cost effective and efficient system can be built. It is shown that using ideal conditions the optimum transition wavelength for a DSG system is 1.4μm with an efficiency of 55.7%. Whereas for a realistic non-ideal DSG system the optimum transition is at 3.4μm resulting in an efficiency around 30% depending on the concentration factor used. It is then shown that an optimized selective coating will be outperformed by a simple non-selective black absorber with 95% absorption at concentration factors above 80 and above 130 when the AM1.5 spectrum is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.