Abstract
Despite the existence of many studies about the structural analysis of a square solar sail, the need for obtaining reliable numerical results still poses a number of practical issues to be solved. The aim of this paper is to propose a new method that improves the existing analysis techniques. In this sense, the solar sail is modeled using distributed sail-boom connections, and its structural behavior in free flight is studied, using the inertia relief method, at different incidence angles of the incoming solar radiation. The proposed approach is able to circumvent the onset of numerical convergence problems by means of suitable strategies. A nonlinear analysis is carried out starting from an initial geometrical configuration in which the whole solar sail is perturbed using a linear combination of the first global buckling modes, obtained with a static eigenvalue analysis. Key points of the procedure are the application of a correct sail pre-stress, a clever choice of the type of elements to be used in the finite element analysis and the use of a suitable mesh refinement. The performance of the new approach have been successfully tested on square solar sails with side length varying from relatively small to medium-to-large sizes, in the range of 10–100 m. A detailed analysis is presented for a reference 20 m × 20 m square solar sail, where the paper shows that the suggested procedure is able to guarantee accurate results without the need of additional stabilization technique. In particular, the vibration global mode shapes and frequencies of the solar sail are correctly described even in presence of unsymmetrical loading conditions. In other terms, the numerical analysis is completed without any convergence problem and any disturbing local modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.