Abstract

AbstractEffects of titanium dioxide (TiO2) dosage in polyurethane (PU) coating and PU coating thickness on solar reflectance, surface adhesion, crack resistance to bending, and thermal conductivity of wood/(natural rubber) (WNR) composite sheet were studied before and after prolonged UV aging. The TiO2 powder content added to the PU coating was varied from 0 to 15 parts per hundred parts of PU. The average PU coating thickness on the WNR composite sheet was altered from 127 ± 10 to 315 ± 10 μm. The experimental results suggested that the solar reflectance slightly increased with increasing TiO2 powder but did not change upon varying the PU coating thicknesses. The presence of TiO2 in the PU coating caused a slight decrease in thermal conductivity because of porosities occurring due to the presence of voids, but increasing the TiO2 powder content in the coating resulted in a progressive increase in thermal conductivity of the composite sheet. In a UV‐accelerated weathering tester (UVB 313 nm), the lightness of the PU coating slightly increased owing to PU discoloration, whereas the solar reflectance, PU/WNR layer adhesion, and crack resistance to bending remained unaffected with increasing UV aging time. J. VINYL ADDIT. TECHNOL., 18:184–191, 2012. © 2012 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call