Abstract

ABSTRACT Field observations were performed in Lake Nanhai, a shallow Chinese lake, to investigate the impact of variations in snow thickness (0–7.0 cm) on solar radiation transfer. As the snow thickness increases from 0 to 7.0 cm, the albedo increases from 0.27 to 0.96. The bulk extinction coefficients of snow, snow-ice, and congelation ice are 9.47, 9.69, and 2.18 m−1, respectively. The peak of the transmission spectrum shifts from the blue to green light waveband compared to the solar radiation spectrum. The proportion of incident radiation at surface penetrating to the under-ice water ranges from 0.5% to 19.7% associated with snow depth from 7 cm to 0 cm. Fresh snow influences the under-ice light condition crucially, and therefore the seasonal evolution of the lake phytoplankton community is affected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.