Abstract

Solar radiation is the main source of energy on the Earth’s surface. It is very important for the environment and ecology, water cycle and crop growth. Therefore, it is very important to obtain accurate solar radiation data. In this study, we use the highest temperature Tmax, lowest temperature Tmin, average temperature Tavg, wind speed U, relative humidity RH, sunshine duration H and maximum sunshine duration Hmax as input variables to construct a deep learning prediction model of solar radiation in the Yellow River Basin. It is compared with the recommended and corrected values of the widely used Å-P method. The results show that: (1) The correction results of the Å-P equation are better in the upstream and downstream of the Yellow River Basin but worse in the midstream. (2) The prediction result of the deep learning model in the Yellow River Basin is far better than that of the Å-P equation using the FAO-56 recommended value. It is the best in the downstream of the Yellow River Basin: R2 increases from 0.894 to 0.934; MSE, RMSE and MAE decrease by 43.12%, 27.73% and 25.80%, respectively. The upstream prediction result comes in second: R2 increases from 0.888 to 0.921; MSE, RMSE and MAE decrease by 33.27%, 20.02% and 19.04%, respectively. The midstream result is the worst: R2 increases from 0.869 to 0.874; MSE, RMSE and MAE decrease by −0.50%, 0.07% and 3.82%, respectively. (3) The prediction results of the deep learning model in the upstream and downstream of the Yellow River Basin are far better than those of the Å-P equation using correction. The R2 in the upstream of the Yellow River Basin increases from 0.889 to 0.921. MSE, RMSE and MAE decrease by 22.11%, 11.84% and 8.94%, respectively. R2 in the downstream of the Yellow River Basin increases from 0.900 to 0.934, and MSE, RMSE and MAE decrease by 13.21%, 11.40% and 5.55%, respectively. In the midstream of the Yellow River Basin, the prediction results of the deep learning model are worse than those of the Å-P equation using correction: R2 increases from 0.870 to 0.874, but MSE, RMSE and MAE decrease by −24.93%, −10.83% and −11.56%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call