Abstract

The prediction of solar radiation allows estimating photovoltaic systems’ power production in advance, guaranteeing a more reliable and stable energy supply. In this work, we present a novel approach for short-term solar radiation forecasting that leverages multi-channel images from the geostationary satellites of the Meteosat series, coupled with GHI values in clear-sky conditions. We propose two distinct deep learning models, a 3D-CNN and a ConvLSTM, to forecast solar radiation in terms of GHI values, up to 6-h ahead with a temporal granularity of 15 min, over a test study area, the city of Turin, Piedmont, Italy. The models have been validated with ground GHI measurements, and the results show that the ConvLSTM consistently outperforms the 3D-CNN for longer forecasting horizons, achieving a MAD of 27.18% and an nRMSE of 0.57 for 6-h ahead predictions. To motivate the use of satellite images, we compared the performance of our approach with a baseline Smart Persistence model and another benchmark model, which previously achieved state-of-the-art performance on the same data set by exploiting various kinds of meteorological inputs. The proposed models outperform the Smart Persistence for predictions farther than 15-min ahead, achieving a Forecast Skill of 0.56 for predictions 6-h ahead. Furthermore, the comparison shows that using raw satellite images overcomes the performance achievable by solely using meteorological variables, reducing the RMSD by more than 3% and the MAD by 1.37% for prediction horizons greater than 4-h ahead.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call