Abstract

The present study investigated the potential of new ensemble method, Bayesian model averaging (BMA), in modeling monthly solar radiation based on climatic data. Data records covered monthly maximum temperature (Tmax), minimum temperature (Tmin), sunshine hours (Hs), wind speed (Ws), relative humidity (RH), and solar radiation values obtained from two weather stations of Turkey. The BMA estimates were compared with the artificial neural networks (ANN), extreme learning machines (ELM), radial basis function (RBF), and their hybrid versions with wavelet transform technique (wavelet-ANN or WANN, wavelet-ELM or WELM, and wavelet-RBF or WRBF). Three evaluation criteria e.g., root mean square error (RMSE), Nash–Sutcliffe efficiency, and determination coefficient (R2), were applied to measure the accuracy of the employed methods. The results indicated the superior accuracy of the BMA4 models over six machine learning models for estimating monthly solar radiation; improvements in accuracy of ANN4, ELM4, RBF4, WANN4, WELM4, and WRBF4 models comprising Tmax, Tmin, Hs, Ws and RH input variables were about 56–41%, 44–31%, 57–46%, 35–26%, 27–16%, and 43–28% in terms of RMSE reduction in both stations. While the hybrid models (i.e., WANN4, WELM4, and WRBF4) increased the accuracy of the single models about 31–21%, 23–18%, and 26–25% for ANN4, ELM4, and RBF4, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.