Abstract

The aim of study was to characterize patterns of interception and distribution of photosynthetically active radiation (PAR) in an apple orchard and to examine its relationship with morphophysiological characteristics of "Royal Gala" and "Fuji Suprema" apple trees. The experiments were conducted during three production cycles in two distinct orchard areas, one covered by black anti-hail netting and another uncovered (control). We analyzed PAR characteristics with data from meteorological sensors installed on the canopy, as well as growth, anatomical, and physiological variables of apple trees. The reduction of PAR by netting influenced the components of radiation balance. PAR intercepted, absorbed, transmitted, and reflected by the canopy under netting decreased by 33%, 31%, 32%, and 46%, respectively, in comparison to uncovered canopy. When leaf area index (LAI) was 1.5 (under netting) and 2.5 (uncovered), maximum PAR interception efficiency was reached. During the three production cycles, a light extinction coefficient of 1.09 and 0.76 was found under netting and in the control, respectively. Plant height was greater under netting in all three cycles for both cultivars. Number of leaves, LAI, and shape index did not differ between treatments. At stage 85, leaves of "Royal Gala" under netting showed lower chlorophyll content and thinner parenchymas in comparison to the control. However, physiological and anatomical characteristics of Fuji "Suprema" did not change under anti-hail netting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call