Abstract

The photodegradation of polycyclic aromatic hydrocarbons (PAHs) may be an important degradation pathway of PAHs in regions with a high solar radiation. The present investigation was aimed at studying the photodegradation of PAHs after their deposition on surface soils with different textures. Photodegradation by-products were also identified and semi-quantified, as well as correlated with the decrease of parent compounds. The experiment was performed by deploying soil samples spiked with a mixture of the 16 US EPA priority PAHs in a methacrylate box, exposed to solar radiation for 7days, meaning a solar energy of 102.6MJm-2. As hypothesized, the individual PAHs were volatilized, sorbed and/or photodegraded, depending on their physicochemical properties, as well as the soil characteristics. Low and medium molecular weight PAHs were more sorbed and photodegraded in fine-textured Regosol soil, while a higher volatilization was observed in the coarse-textured Arenosol soil. In contrast, high molecular weight PAHs were more photodegraded in Arenosol soil. Specially low half-lives were noted for anthracene and benzo(a)pyrene, agreeing with previous findings at laboratory scale. Nine by-products were identified, including oxy-, nitro- and hydro-PAHs, whose toxic and mutagenic potential might be higher than the 16 priority PAHs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.