Abstract
In this study, the data obtained from meteorological satellites were analyzed using tensor decomposition. The data used in this paper are meteorological image data observed by the Himawari-8 satellite and solar radiation data generated from Himawari Standard Data. First, we applied Higher-Order Singular Value Decomposition (HOSVD), a type of tensor decomposition, to the original image data and analyzed the features of the data, called the core tensor, obtained from the decomposition. As a result, it was found that the maximum value of the core tensor element is related to the cloud cover in the observed area. We then applied Multidimensional Principal Component Analysis (MPCA), an extension of principal component analysis computed using HOSVD, to the solar radiation data and analyzed the Principal Components (PC) obtained from MPCA. We also found that the PC with the highest contribution rate is related to the solar radiation in the entire observation area. The resulting PC score was compared to actual weather data. From the result, it was confirmed that the temporal transition of the amount of solar radiation in this area can be expressed almost correctly by using the PC score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.