Abstract
AbstractMetal–organic frameworks (MOFs) are a class of promising nanomaterials for atmospheric water harvesting (AWH), especially in arid remote areas. However, several challenges are still faced for practical applications because of the dissatisfied water adsorption/desorption properties in terms of the capability, kinetics, and stability. Herein, we report the facile synthesis of a nano‐sized octahedral nitrogen‐modified MOF‐801 that exhibits superior solar‐powered AWH performance using a custom‐made device, with a state‐of‐the‐art water harvesting ability up to from air upon 12‐h test under a relative humidity (RH) of 30% and simulated sunlight irradiation. The nitrogen‐modified MOF‐801 with rapid sorption–desorption kinetics, uptakes of water at 30% RH within 30 min and releases 90% of the captured water within 10 min under 1‐sun illumination. The success relies on N‐doping‐induced mixed‐linkers in the form of 2,3‐diaminobutanedioic acid and fumaric acid in the unique pore structures of the MOFs for rapid and high‐capacity water capture. The N‐doped MOF‐801 with water uptake capacity, fast adsorption kinetics, and cycle stability sheds light on the practical use of MOFs for effective solar‐powered water harvesting from droughty air.image
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.