Abstract

Solar-powered electrocoagulation (EC) process is proven to be an alternative option for wet flue gas desulfurization (WFGD) wastewater treatment, due to simultaneous removal of multiple pollutants efficiently and reduce the operation costs significantly. Rapid and stable photoelectricity response is necessary for the removal efficiency of pollutants (eg. COD and turbudity), especially in low solar irradiation intensity. In this paper, dimensionally stable anode (DSA) and operation voltages in EC process driven by solar cells were investigated, for the purpose of the optimized removal of pollutants, including COD, turbidity, (free residual chlorine and chlorine dioxide). The results show that the removal efficiency of COD and turbidity can respectively reach 59.12% and 39.11% within 30 min of illumination time (the enhanced solar radiation = 915.8 W m-2), when Ti-based plates were adopted. The concentration of free residual chlorine and chlorine dioxide can reach 2.70 and 5.31 mg L-1, indicating that chlorine ions present in WFGD wastewater have been converted into active chlorine partly. Solar-powered EC equipped with Ti-based plates have a potential prospect in EC process for WFGD wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call