Abstract

The development of newer technologies in concentrating solar power (CSP) plants, particularly plants using dish Stirling systems, as well as changes in the design of photovoltaic (PV) inverters is creating new challenges in the design of low- and medium-voltage collector systems for large solar power plants. Furthermore, interconnect requirements for reactive power, voltage, and ramp rate control and the characteristics of solar power require unique solutions for optimal plant design. To ensure large solar plants can be connected successfully to the grid without impacting grid stability or reliability, the design process must include the development of suitable models of these plants for transient and dynamic simulation. Simulation tools and models can then be used to determine special requirements to deal with issues such as daily plant energization, low voltage ride-through, temporary overvoltage and feeder grounding, etc. The provision of dynamic and static reactive power and the optimization thereof for application at either low, medium, or high voltage and the control issues associated with plant-wide reactive power and voltage control are also key issues in the design. The presentation will focus on the key technical issues and design optimization of large solar power plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.