Abstract

The strong growth that is felt at the level of photovoltaic (PV) power generation craves for more sophisticated and accurate forecasting methods that could be able to support its proper integration into the energy distribution network. Through the combination of the vector autoregression model (VAR) with the least absolute shrinkage and selection operator (LASSO) framework, a set of sparse VAR structures can be obtained in order to capture the dynamic of the underlying system. The robust and efficient alternating direction method of multipliers (ADMM), well known for its great ability dealing with high-dimensional data (scalability and fast convergence), is applied to fit the resulting LASSO-VAR variants. This spatial-temporal forecasting methodology has been tested, using 1-hour and 15-minutes resolution, for 44 microgeneration units time-series located in a city in Portugal. A comparison with the conventional autoregressive (AR) model is performed leading to an improvement up to 11%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.