Abstract

This paper proposes empirical mode decomposition (EMD)-based robust kernel extreme learning machine (RKELM) to achieve a precise predicted value of solar power generation in a smart grid environment. The non-stationary historical solar power data is initially decomposed into various intrinsic mode functions (IMFs) using EMD, which are subsequently passed through the proposed robust Morlet wavelet kernel extreme learning machine (RWKELM) for solar power prediction at different time horizons. Further a reduced kernel matrix version of RWKELM is used to decrease the training time significantly without appreciable loss of forecasting accuracy. By implementing the real time data for validation of the proposed method for short term solar power prediction it can be observed that the proposed EMD-based RWKELM outperforms various other methods, in terms of different performance matrices and execution time. The solar power prediction results on experimental data show the lowest error which proves the highest prediction accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call