Abstract

This paper reports a propulsion motor for a solar-powered aircraft. The motor uses precompressed aluminum stator windings, with a fill factor of greater than 75%, in a permanent magnet synchronous machine. The motor performance is compared empirically to an identical machine with conventionally wound copper windings. It is shown that there are many advantages to using compressed aluminum windings in terms of weight reduction, thermal improvement, and lower cost, for the same loss and electromagnetic performance, provided a sufficiently high slot fill factor can be achieved. The design and manufacture of the compressed coils is also discussed. A modular stator arrangement is used, in the form of a solid coreback with keyed teeth to allow easy assembly of the compressed windings. It is noted that the electromagnetic performance of the machine is unaffected by the modular nature of the magnetic core. Two prototype motors, one wound with conventional copper and the other with precompressed aluminum windings, are constructed and tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.