Abstract

Solar photovoltaic (PV) cells are currently limited by the temperature factor that causes the drop of efficiency when the module temperature rises. Many approaches were made to solve the issue so that the performance of the solar cell is improved including the integration of thermoelectric generator (TEG) hybrid. The objective of these improvements is to increase the temperature coefficient that will enhance the efficiency of the solar cells. Some approach may produce other benefits like thermal energy or building integration other than producing electrical energy. Common PV panels only utilize 15-30% of the irradiation received while the rest of it are reflected away or turned into heat waste. In this paper, the relationship of PV heat waste and PV performance relationship is explored. Photovoltaic/thermal-thermoelectric generator (PV/T-TEG) hybrid layouts were compared based on its performances including overall efficiency to identify solutions for this type of application. PV efficiency and losses due to thermal limits will demonstrate the issue as temperature increases. Solar cell that is available in the current market is simulated for its temperature prediction and heat dissipation. This will determine the potential application for a TEG hybrid. Previous conducted experiments and simulations show a 0.14% to 5.2% increment in electrical efficiency. The prediction model will agree with this range of finding. The current advancement in solar PV/T-TEG is compiled and the future approach that can be taken to solve the temperature limits will be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call