Abstract

Garenoxacin (GRNX) is a novel des-F(6)-fluoroquinolone on the horizon; thus, its fate and risk in the aquatic environment deserve attention. This study systematically investigated, for the first time, the phototransformation of GRNX under simulated and natural sunlight and assessed the ecotoxicity of its photodegradation products. Phototransformation of GRNX was observed to depend strongly on its ionization state, with direct photolysis and self-sensitized photolysis having comparable contributions for the cationic and zwitterionic species, while the latter dominated for the anionic species. Singlet oxygen generated via the self-sensitized photolysis of GRNX was the major reactive oxygen species in its photodegradation. Phototransformation of GRNX in different ionization states followed distinct pathways, with defluorination of the difluoromethyl group occurring only for the zwitterionic and anionic species. GRNX photodegradation in natural water could be described by a simple kinetic model based on the measured steady-state concentrations of 1O2 and ·OH. Toxicity tests with Vibrio fischeri and Chlorella vulgaris consistently indicate that the generation of hydroxylation and decarboxylation products during photodegradation of GRNX increased the acute toxicity. These findings not only provide insights into the fate of GRNX in sunlit surface water but also reveal the potentially significant risk of its photodegradation products to the aquatic ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.