Abstract

The ability of solar-only and solar photocatalytic (TiO2) disinfection batch-process reactors to inactivate fungal pathogens was evaluated. The photocatalytic disinfection of five wild strains of the Fusarium genus (F. equiseti, F. oxysporum, F. anthophilum, F. verticillioides, and F. solani), a common plant pathogen in Spain and around the world, was successfully achieved. Different disinfection times (1–6h) were necessary to inactivate a fungus concentration in water of 103CFU/mL to almost zero by solar photocatalysis. The order of sensitivity to solar disinfection was F. oxysporum>F. solani>F. verticillioides>F. anthophilum>F. equiseti. The presence of the TiO2 photocatalyst under solar radiation showed a positive effect on lost fungus viability. The photocatalytic disinfection times were shorter and disinfection better than for solar-only disinfection. The order of photocatalytic sensitivity was different from solar disinfection: F. verticillioides>F. oxysporum>F. solani>F. anthophilum>F. equiseti.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call