Abstract

The photocatalytic degradation of methylparaben was investigated under simulated solar light using a synthesised metal–organic framework (UiO-66-NH2). For that purpose, the pollutant was spiked in different water matrices: distilled water, water from Lima River (Northwestern Portugal), and urban wastewater. Complete removal of the methylparaben in distilled water was achieved in 1 h reaction. In natural water matrices, the photocatalytic performance decreased to 70% removal after 3 h reaction, owing to the physical–chemical properties of the water samples. The UiO-66-NH2 photocatalyst revealed high stability under the continuous mode, reaching a steady state in 5 h, from which the removal percentage was kept constant for 25 h. The photocatalytic degradation of methylparaben gave five main reaction byproducts and four short-chain carboxylic acids, identified by LC/ESI-MS and UHPLC analyses, respectively. The mechanism of degradation was investigated by using selective scavengers. Photogenerated holes and superoxide radicals were found as the main species responsible for the degradation of methylparaben. The abatement of other parabens (as ethyl- and propylparaben) was also evaluated, being the conversion influenced by the length of the alkyl side chain. The results of this study give a comprehensive sight into the effective photocatalytic remediation of parabens using UiO-66-NH2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.