Abstract

Solar TiO2photocatalytic process assisted by a Fresnel lens was investigated for treating an azo dye wastewater of Acid Orange 10 (AO10). Response surface methodology (RSM) was employed to assess the effect of critical process parameters (including initial pH of wastewater, concentration of TiO2, and reaction time) on treatment performance in terms of COD and TOC degradation efficiency. Optimized reaction conditions based on the analysis of RSM were established under an initial pH of 6.0, a concentration of TiO2of 1 g/L, and a reaction time of 2 h for reaching a 90% COD and TOC degradation of AO10 wastewater. With the assistance of Fresnel lens, the TOC degradation rate of AO10 wastewater increased significantly from 0.606 h−1and 0.289 h−1to 1.477 h−1and 0.866 h−1in summer (June) season (UV280–400 nm nm: 39.9–44.8 W/m2) and winter (December) season (UV280–400 nm nm: 23.9–26.9 W/m2), respectively. This could be mainly due to the concentrating effect of Fresnel lens for solar energy, resulting in an increase of 2~2.5 times of solar light intensity and a raising heat irradiation in terms of 10~15 °C of wastewater temperature. These results revealed that solar energy could be concentrated effectively by using Fresnel lens and showed a significant promoting effect on the TiO2photocatalytic degradation of dye wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.