Abstract

Gd–La codoped TiO2 nanoparticles with diameter of 10 nm were successfully synthesized via a sol–gel method. The photocatalytic activity of the Gd–La codoped TiO2 nanoparticles evaluated by photodegrading methyl orange has been significantly enhanced compared to that of undoped or Gd or La monodoped TiO2. Ti4+ may substitute for La3+ and Gd3+ in the lattices of rare earth oxides to create abundant oxygen vacancies and surface defects for electron trapping and dye adsorption, accelerating the separation of photogenerated electron–hole pairs and methyl orange photodegradation. The formation of an excitation energy level below the conduction band of TiO2 from the binding of electrons and oxygen vacancies decreases the excitation energy of Gd–La codoped TiO2, resulting in versatile solar photocatalysts. The results suggest that Gd–La codoped TiO2 nanoparticles are promising for future solar photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call