Abstract

We study high-order acoustic modes which reside in the outer layers of the solar interior. Magnetic field effects are not taken into account in this paper as we wish first to filter out how the modal frequencies depend on physical characteristics of a particular model structure of the Sun. In particular, we are interested in how the modal frequencies of solar global oscillations depend on the thickness of the convection layer and on the temperature gradient of the solar interior below. The model we use consists of three planar layers: an isothermal atmosphere, while the convection layer and the interior have temperature gradients that are adiabatic and sub-adiabatic, respectively. The presence of a convection layer with a finite thickness brings in additional modes while the variations in temperature gradient of the interior cause shifts in eigenfrequencies that are more pronounced for the p modes than for the g modes. These shifts can easily be of the order of several hundreds of μHz, which is much larger than the observational accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.