Abstract

We demonstrate that with only 1 μm, equivalent bulk thickness, of crystalline silicon, sculpted into the form of a slanted conical-pore photonic crystal and placed on a silver back-reflector, it is possible to attain a maximum achievable photocurrent density (MAPD) of 35.5 mA/cm2 from impinging sunlight. This corresponds to absorbing roughly 85% of all available sunlight in the wavelength range of 300–1100 nm and exceeds the limits suggested by previous “statistical ray trapping” arguments. Given the AM 1.5 solar spectrum and the intrinsic absorption characteristics of silicon, the optimum carrier generation occurs for a photonic crystal square lattice constant of 850 nm and slightly overlapping inverted cones with upper (base) radius of 500 nm. This provides a graded refractive index profile with good anti-reflection behavior. Light trapping is enhanced by tilting each inverted cone such that one side of each cone is tangent to the plane defining the side of the elementary cell. When the solar cell is packaged with silica (each pore filled with SiO2), the MAPD in the wavelength range of 400–1100 nm becomes 32.6 mA/cm2 still higher than the Lambertian 4n2 benchmark of 31.2 mA/cm2. In the near infrared regime from 800 to 1100 nm, our structure traps and absorbs light within slow group velocity modes, which propagate nearly parallel to the solar cell interface and exhibit localized high intensity vortex-like flow in the Poynting vector-field. In this near infrared range, our partial MAPD is 10.9 mA/cm2 compared to a partial MAPD of 7 mA/cm2 based on “4n2 statistical ray trapping.” These results suggest silicon solar cell efficiencies exceeding 20% with just 1 μm of silicon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call