Abstract

Solar energy is one of the most popular sources of renewable energy today. It is therefore essential to be able to predict solar power generation and adapt energy needs to these predictions. This paper uses the Transformer deep neural network model, in which the attention mechanism is typically applied in NLP or vision problems. Here, it is extended by combining features based on their spatiotemporal properties in solar irradiance prediction. The results were predicted for arbitrary long-time horizons since the prediction is always 1 day ahead, which can be included at the end along the timestep axis of the input data and the first timestep representing the oldest timestep removed. A maximum worst-case mean absolute percentage error of 3.45% for the one-day-ahead prediction was obtained, which gave better results than the directly competing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.