Abstract

AbstractSolar heating is important for many applications but less attractive for concepts requiring intermittent heating, such as ionic thermoelectric supercapacitors (ITESCs). However, the heating process even at constant solar illumination can be converted to temperature oscillations through water infiltration and evaporation. Here, this process is demonstrated for a carbon nanotube‐cellulose membrane and used to induce temporally varying temperature gradients across an ITESC, which enables continuous operation through repeated charge and discharge cycles. A temperature variation of 10 K can be generated on the top electrode, which leads to a variation in the temperature difference across the ITESC of 7.5 K. Precise control over charge and discharge durations can be achieved by adjusting the volume and interval of the added water. The concept of temporarily adjusting temperatures by evaporative cooling may be extended to create intermittent heating also for other heat sources that are typically constant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.