Abstract

The potential of solar thermal chemical-looping reforming for efficient and sustainable co-production of synthesis gas and hydrogen is discussed. In an endothermic partial oxidation step, methane reacts with oxygen released from a metal oxide to produce hydrogen and carbon monoxide. In an exothermic second step, steam reacts with the reduced metal oxide to produce hydrogen. This review summarizes the process and chemical thermodynamic foundations of solar chemical-looping reforming and provides a synopsis of materials studies that reflect the state of knowledge in 2017. The challenges and opportunities for future research and development are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.