Abstract

Inorganic chemistry has been and continues to be a central discipline in the field of renewable energy and solar fuels. A fundamental approach to storing solar energy is artificial photosynthesis, whereby uphill chemical reactions are driven by light, e.g. the water gas shift reaction, halogen acid splitting, or water splitting. This article endeavors to define a common context for these research topics, particularly by analyzing the thermodynamic boundaries of photosynthesis. Specifically, the generalized efficiency restrictions on both light absorption and energy storage are expounded, the analogous limitations for several individual photosynthetic strategies are stated, several synthetic catalyst architectures are highlighted, the advantages of molecular and macroscopic approaches are discussed, and key figures of merit are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.