Abstract

Novel machine-learning and feature-selection algorithms have been developed to study: i) the flare-prediction-capability of magnetic feature (MF) properties generated by the recently developed Solar Monitor Active Region Tracker (SMART); ii) SMART’s MF properties that are most significantly related to flare occurrence. Spatiotemporal association algorithms are developed to associate MFs with flares from April 1996 to December 2010 in order to differentiate flaring and non-flaring MFs and enable the application of machine-learning and feature-selection algorithms. A machine-learning algorithm is applied to the associated datasets to determine the flare-prediction-capability of all 21 SMART MF properties. The prediction performance is assessed using standard forecast-verification measures and compared with the prediction measures of one of the standard technologies for flare-prediction that is also based on machine-learning: Automated Solar Activity Prediction (ASAP). The comparison shows that the combination of SMART MFs with machine-learning has the potential to achieve more accurate flare-prediction than ASAP. Feature-selection algorithms are then applied to determine the MF properties that are most related to flare occurrence. It is found that a reduced set of six MF properties can achieve a similar degree of prediction accuracy as the full set of 21 SMART MF properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call