Abstract

The equatorial rotation rate has been inferred as a function of depth through the outer 16 Mm of the Sun from observations of high-degree five-minute oscillations. An optimal averaging inversion procedure due to Backus & Gilbert (1970) has been applied to frequency splittings measured from power spectra obtained using Doppler data spanning three and five consecutive days. The resulting rotation curves have proven to be much more stable than the curves obtained from data sets of single days. The results imply that the solar rotation rate increases with depth by 0.023 μHz reaching a maximum at about 2 Mm below the surface, then decreases by 0.037 μHz down to 16 Mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.