Abstract

AbstractSolar cells (SCs) are the most ubiquitous and reliable energy generation systems for aerospace applications. Nowadays, III–V multijunction solar cells (MJSCs) represent the standard commercial technology for powering spacecraft, thanks to their high‐power conversion efficiency and certified reliability/stability while operating in orbit. Nevertheless, spacecraft companies are still using cheaper Si‐based SCs to amortize the launching costs of satellites. Moreover, in recent years, new SCs technologies based on Cu(In,Ga)Se2 (CIGS) and perovskite solar cells (PSCs) have emerged as promising candidates for aerospace power systems, because of their appealing properties such as lightweightness, flexibility, cost‐effective manufacturing, and exceptional radiation resistance. In this review the current advancements and future challenges of SCs for aerospace applications are critically discussed. In particular, for each type of SC, a description of the device's architecture, a summary of its performance, and a quantitative assessment of the radiation resistance are presented. Finally, considering the high potential that 2D‐materials (such as graphene, transition metal dichalcogenides, and transition metal carbides, nitrides, and carbonitrides) have in improving both performance and stability of SCs, a brief overview of some important results concerning the influence of radiation on both 2D materials‐based devices and monolayer of 2D materials is also included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.