Abstract

A two-step solar thermochemical cycle based on Co3O4/CoO redox reactions integrated into an Air Brayton cycle is considered for thermochemical heat storage. The two-step cycle encompasses (1) the thermal reduction of Co3O4 to CoO and O2 driven by concentrated solar irradiation and (2) the re-oxidation of CoO with O2 to Co3O4, releasing heat and completing the cycle. An evacuated horizontal solar thermochemical reactor is proposed with an inclined slope and quartz window for promoting direct irradiation of dense, granular Co3O4/CoO flows. Mechanical analysis of flat and spherical quartz window designs for a 5kWth scale prototype was performed to ensure window stability. Detailed mass and heat transfer analysis for a 5kWth scale prototype was performed coupling Monte Carlo ray tracing for radiative heat exchange to the energy balances for the bed and the reactor. A parametric study of the reactor design was performed with varying cavity depth, particle inlet temperature, and solar concentration ratio. The optimal solar reactor design maximized conversion of Co3O4 to CoO and particle outlet temperature while preventing particle overheating and achieved a Co3O4 to CoO conversion of 0.91, particle outlet temperature of 1385K, maximum flow temperature of 1572K, and absorption efficiency of 0.76.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.