Abstract

Coupling the photoproduction of solar fuel and value-added chemicals is highly attractive, as it maximizes the utilization of incident sunlight and the economic value of photocatalytic reactions. Constructing intimate semiconductor heterojunction for these reactions is highly desirable due to accelerated charge separation at the interfacial contact, but is challenged by material synthesis. Here, an active heterostructure bearing intimate interface, consisting of discrete Co9 S8 nanoparticles anchored on cobalt doped ZnIn2 S4 using a facile in situ one-step strategy, can drive photocatalytic co-production of H2 O2 and benzaldehyde from a two-phase water/benzyl alcohol system with spatial product separation is reported. The heterostructure yields a high production amountof 49.5 and 55.8mmolL-1 for H2 O2 and benzaldehyde under visible-light soaking, respectively. The synchronous elemental Co doping and intimate heterostructure establishment substantially improve the overall reaction kinetics. Mechanism studies reveal that H2 O2 generated in the aqueous phase undergoes photodecomposition forming hydroxyl radical, which is subsequently transferred into the organic phase to oxidize benzyl alcohol into benzaldehyde. This study offers fertile guidelines for creating integrated semiconductors and broadens the avenue toward the coupled production of solar fuels and industrially important chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.