Abstract

Removal of pharmaceuticals and personal care products (PPCPs) is often inefficient during conventional water treatment, posing threats to human health. Herein, we have developed a novel solar/TiO2/chlorine system upgraded from chlorine disinfection for the simultaneous degradation of PPCPs and the inactivation of Escherichia coli from drinking water. The addition of 100 μM of chlorine to the photocatalytic process considerably enhanced the degradation efficiency of PPCPs and demonstrated excellent disinfecting abilities, as confirmed by a 4.7 × increase in the carbamazepine degradation rate constant coupled with a 3.2-log (99.94%) reduction of E. coli cells within 1 min. Photoinduced charge pairs (hVB+ and eCB−) were identified for reactive species generation, and HO• and ClO• were the primary contributors to PPCPs degradation. The process exhibited satisfactory carbamazepine degradation efficiency in different water matrices and the cycling tests showed the TiO2 photocatalyst to be highly stable and reusable. Overall, our solar/TiO2/chlorine system is a potentially effective alternative to conventional drinking water treatment using chlorination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call