Abstract

Photoanodes prepared using CuInS2/CdS/ZnO nanowires were fabricated by a solution-based process for constructing a photo-driven hydrogen generation system. For efficient light harvesting and photoexcited charge collection, ZnO nanowire (NW) photoanode arrays were co-sensitized with CdS and CuInS2 (CIS). A CdS layer was deposited on the ZnO NW via successive ion layer adsorption and reaction (SILAR), and the CIS layer was prepared by depositing a molecular precursor solution onto the CdS/ZnO NW. The generated anodic photocurrent was increased with the subsequent deposition of the CIS and CdS layers. Ultraviolet photoelectron spectroscopy analysis revealed cascade type-II band alignments for the CIS/CdS/ZnO NW photoanodes, which enabled efficient electron collection. Our heterostructure photoelectrode has generated a greatly improved photocurrent density of 13.8 mA cm(-2) at 0.3 V vs. SCE under 1 sun illumination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.