Abstract
Dihydroxyacetone is the most desired product in glycerol oxidation reaction because of its highest added value and large market demand among all possible oxidation products. However, selectively oxidative secondary hydroxyl groups of glycerol for highly efficient dihydroxyacetone production still poses a challenge. In this study, we engineer the surface of BiVO4 by introducing bismuth-rich domains and oxygen vacancies (Bi-rich BiVO4-x) to systematically modulate the surface adsorption of secondary hydroxyl groups and enhance photo-induced charge separation for photoelectrochemical glycerol oxidation into dihydroxyacetone conversion. As a result, the Bi-rich BiVO4-x increases the glycerol oxidation photocurrent density of BiVO4 from 1.42 to 4.26 mA cm−2 at 1.23 V vs. reversible hydrogen electrode under AM 1.5 G illumination, as well as the dihydroxyacetone selectivity from 54.0% to 80.3%, finally achieving a dihydroxyacetone production rate of 361.9 mmol m−2 h−1 that outperforms all reported values. The surface atom customization opens a way to regulate the solar-driven organic transformation pathway toward a carbon chain-balanced product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nature Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.