Abstract

Solar-energy-driven water purification is a promising technology for obtaining clean water during the current global climate crisis. Solar absorbers with high light absorption capacity and efficient energy conversion are critical components of solar-driven water evaporation and purification systems. Herein, we demonstrate that porous reduced graphene oxide (rGO)-based composite spheres facilitate efficient water evaporation and effective organic pollutant adsorption from water. Most solar light (>99% for 1 mm thick composites) is absorbed by the porous rGO-based composite spheres floating on water and is subsequently converted into heat, which is efficiently transferred to water at the air–water interface. Evaporation efficiency via energy conversion by the floating sphere composites reaches ∼74%. The increase in surface temperature of water also contributes to improving the adsorption capacity of the rGO-based composite spheres for organic pollutants. Furthermore, the composites can effectively block ultraviolet radiation, preventing the chemical reaction of water pollutants into harmful components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.