Abstract

Abstract This paper presents the preliminary design and techno-economic assessment of an innovative solar system for the simultaneous production of water and electricity at small scale, based on the combination of a solar micro gas turbine and a bottoming desalination unit. The proposed layout is such that the former system converts solar energy into electricity and rejects heat that can be used to drive a thermal desalination plant. A design model is developed in order to select the main design parameters for two different desalination technologies, phase change and membrane desalination, in order to better exploit the available electricity and waste heat from the turbine. In addition to the usual design parameters of the mGT, the impact of the size of the collector is also assessed and, for the desalination technologies, a tailored multi-effect distillation unit is analysed through the selection of the corresponding design parameters. A reverse osmosis desalination system is also designed in parallel, based on commercial software currently used by the water industry. The results show that the electricity produced by the solar micro gas turbine can be used to drive a Reverse Osmosis system effectively whereas the exhaust gases could drive a distillation unit. This would decrease the stack temperature of the plant, increasing the overall energy efficiency of the system. Nevertheless, the better thermodynamic performance of this fully integrated system does not translate into a more economical production of water. Indeed, the cost of water turns out lower when coupling the solar microturbine and Reverse Osmosis units only (between 3 and 3.5 €/m3), whilst making further use the available waste heat in a Multi Effect Distillation system rises the cost of water by 15%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.